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Abstract--A sample of chert-mudstone layers provides a rare opportunity for quantitative analyses of 
competence contrasts in naturally deformed rocks. This sample contains deformed quartz veins, possibly formed 
subperpendicular to bedding during initial bedding-normal compaction, and abundant radiolarians as strain 
markers whose viscosity during deformation is approximated by that of chert. Under several assumptions these 
allow quantitative analyses of two types of competence contrast in ductile deformation, layer competence 
contrast and inclusion/matrix competence contrast. Layer competence contrast results in strain and cleavage 
refraction through the layers, while inclusion/matrix competence contrast is illustrated by the difference in strain 
state between radiolarians and their matrix. A quartz vein presumed to be initially perpendicular to bedding 
provides estimates of layer-parallel shear strains and chert/mudstone layer viscosity ratios which were also used 
as radiolaria/matrix viscosity ratios in different layers. Radiolarian shapes are factorized into cleavage strains and 
pre-cleavage shapes. Cleavage strains in matrix are then determined from radiolarian strains applying Eshelby's 
equations, and their variations as well as the refraction of cleavage through the layers are compared with 
Treagus's theoretical modeling of strain refraction. 

With decreasing layer competence, cleavage refracts toward bedding and increases in intensity so that 
cleavage-bedding intersections vary slightly but systematically through the layers, suggesting a three- 
dimensional strain refraction. All three principal axes of radiolarian and matrix cleavage strain ellipsoids 
estimated indeed refract from layer to layer. Strain magnitude systematically increases with decreasing layer 
competence. These results are consistent with the strain refraction theory. However, no systematic change in 
strain ellipsoid shape associated with strain refraction is recognized. 

INTRODUCTION 

Two different terms, competence and ductility, are 
commonly used to describe the variation in rock 
properties during deformation. These are dis- 
tinguished by Hobbs et al. (1976, pp. 67-68) and 
Means (1990) so that competence denotes a relative 
brittle or ductile strength while ductility measures 
the ability to undergo permanent strain without fail- 
ure, although we often use the term 'competence' 
loosely as a measure of inverse relative ductility (e.g. 
Ramsay 1982). 

Competence in ductile deformation therefore refers 
to the flow strength which is given by such parameters as 
differential stress at constant strain-rate or strain-rate at 
constant differential stress, and thus depends on the 
rheology of flowing rocks. Flow strength in Newtonian 
rheology is directly related with viscosity which is a 
material constant, while it can be also related in non- 
Newtonian rheology with effective viscosity which is not 
a material constant in this case and will vary in time and 
space (Treagus & Sokoutis 1992). In this paper comp- 
etence contrast in ductile deformation is used to describe 
effective viscosity ratios in rocks, as in Treagus 
(1988). 

Two types of competence contrast affect ductile de- 
formation; layer competence contrast and inclusion/ 
matrix competence contrast. The influences of layer 
competence contrasts in rocks are seen as variations in 
dominant fold wavelengths and shapes of folds and 
boudins, and also as strain and cleavage refractions, 
while those of inclusion/matrix competence contrasts 

recognized as variations in finite strain state between 
are inclusions and matrix (e.g. Ramsay 1982). 

Cleavage refraction in layers of differing lithology has 
been described since Sorby (1853) and Harker (1886) 
who already considered this phenomenon as a refraction 
of strain. If it can be assumed that cleavage forms 
parallel to the XY plane of the finite strain ellipsoid and 
develops according to strain magnitude, refracting 
cleavage demonstrates the changing orientations and 
magnitudes of finite strains (Ramsay 1982, Ramsay & 
Huber 1983, p. 184, 1987, p. 462). Theoretical aspects of 
stress and strain refraction across layers of different 
viscosities have been studied in detail by Treagus (1973, 
1981, 1983, 1988). She assumed planar Newtonian layers 
with perfect adherence and derived an important rule 
that the ratio of layer-parallel finite shear strains in 
adjacent layers is equal to the inverse of their viscosity 
ratio (Treagus 1983, also Cobbold 1983, Weijermars 
1992), which was recently confirmed for the case of 
layer-parallel simple shear by model experiments (Trea- 
gus & Sokoutis 1992). She showed that finite strains 
should, in theory, strongly vary in magnitude, ellipsoid 
shape and orientation across viscosity contrasts (Trea- 
gus 1983, 1988). For cleavage subparallel to finite XY 
planes, cleavage-bedding intersections would vary in 
orientation across layers if all three principal strain axes 
are oblique to layering (Treagus 1988). Other geological 
implications of strain and cleavage refraction in rocks 
are discussed by Treagus (1983, 1988). However, vir- 
tually no example of quantitative analysis of strain and 
cleavage refraction in naturally deformed rocks has been 
reported so far. 
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Inclusion/matrix competence contrasts result in vari- 
ations in finite strain state between inclusions and matrix 
as well as between inclusions of contrasting competences 
(Ramsay 1982, Lisle 1985, pp. 23-25). This has been 
illustrated with pebbles in conglomerates or oolites in 
limestones (e.g. Gay 1968b, 1969, Tan 1974, Gay & 
Fripp 1976, Lisle & Savage 1982, Lisle et al. 1983, 
Ramsay & Huber 1983, pp. 107-109, Freeman & Lisle 
1987), and also experimentally (Gay 1968a, Tan 1974, 
Gay & Jaeger 1975). Gay (1968a) developed a two- 
dimensional theory on deformation of Newtonian vis- 
cous inclusions in a matrix of contrasting viscosity by 
pure and simple shears, and attempted to extend his 
theory to three dimensions where strain only differs in 
magnitude between an initially spherical inclusion and 
its matrix. But the equations derived by Gay (1968a) 
were pointed out to be incorrect by Bilby et al. (1975), 
who extended Eshelby's (1957) theory on linear elastic 
deformation of an ellipsoidal inclusion with different 
elastic constants from those of matrix, to slow incom- 
pressible Newtonian flow of a viscous inclusion embed- 
ded in a matrix of contrasting viscosity, using the well- 
known analogy between these two types of deformation. 
They applied this theory to special irrotational defor- 
mations of an elliptic cylinder and of uniaxially prolate 
and oblate ellipsoids. Eshelby's (1957) equations have 
been solved numerically for two-dimensional pure and 
simple shears of an arbitrary elliptic cylinder by Bilby & 
Kolbuszewski (1977) and for three-dimensional irrota- 
tional deformation of an arbitrary ellipsoid by Freeman 
(1987). Freeman (1987) predicted that strain differs not 
only in magnitude but also in ellipsoid shape between an 
inclusion and its matrix. A competent inclusion embed- 
ded in an incompetent matrix thus deforms to a more 
prolate shape than the matrix strain ellipsoid, which was 
supported by data from naturally deformed conglomer- 
ates (Freeman & Lisle 1987). Applications of these two- 
and three-dimensional solutions of Eshelby's (1957) 
equations to naturally deformed rocks are, however, 
still rare (Lisle et al. 1983, Freeman & Lisle 1987). 

The purpose of this paper is to present tentative 
quantitative analyses of these two types of competence 
contrasts and to test Treagus's theoretical modeling of 
strain refraction in naturally deformed rocks. A sample 
of chert-mudstone layers with refracted cleavage con- 
tains deformed quartz veins possibly formed subperpen- 
dicular to bedding during initial bedding-normal 
compaction and abundant radiolarians as strain markers 
whose viscosity during deformation is approximated by 
that of chert. Cleavage orientation measurement on two 
sections reveals a refraction of cleavage through the 
layers. A quartz vein presumed to be initially perpen- 
dicular to bedding provides estimates of layer-parallel 
shear strains. Axial ratios and orientations of radiolar- 
ians from three sets of sections allow factorizing two- 
and three-dimensional radiolarian shapes into com- 
ponents of pre-cleavage shapes and cleavage strains. 
Cleavage strains in the matrix are then determined from 
radiolarian strains applying Eshelby's equations. This 
sample therefore allows the first quantification of strain 

and cleavage refraction in naturally deformed rocks and 
provides a test for Treagus's theoretical modeling of 
strain refraction. These analyses are, however, made 
possible under several assumptions whose validities as 
well as the limitations of the analyses are also discussed. 

SAMPLE DESCRIPTION 

The sample analyzed in this study was collected from a 
Permian-Triassic chert formation in Kawai area of the 
central Kitakami Mountains, where cleavage defor- 
mation took place during Early Cretaceous time under 
greenschist facies conditions (cf. Kanagawa 1991). This 
sample consists of a 1 cm thick purple chert layer, which 
exhibits pinch-and-swell structure, embedded in dark 
purple mudstone (Fig. la). 

Cleavage is well developed in the mudstone, while it is 
only weakly developed in the chert (Fig. 2). There is 
apparently another foliation characterized by alignment 
of phyllosilicates subparallel to bedding, which is over- 
printed by cleavage oblique to bedding (Fig. lc). Be- 
cause the change in lithology from chert to mudstone is 
gradual on both sides of the chert layer, cleavage refracts 
continuously through the layers as seen on a section 
subnormal to cleavage-bedding intersections (Fig. 2a). 
Quartz veins on this section also refract concomitantly 
with cleavage (Fig. lb). Some quartz veins are folded 
and locally cut by cleavage, indicating pre- or syn- 
cleavage formation of these veins (Figs. l b a n d  2a). 
Veins post-dating cleavage are also present in the 
sample. They are undeformed cutting clearly both cleav- 
age and deformed veins, but they also slightly refract 
across layers. The refraction of these undeformed veins 
may be related to stress refraction (Treagus 1988). In 
contrast, cleavage and veins apparently do not refract on 
a section subparallel to cleavage-beding intersections 
(Fig. 2b). Cleavage traces are subparallel to bedding 
here, while some deformed veins are subperpendicular 
to bedding (Fig. ld). 

The sample contains abundant deformed radiolarians 
in both chert and mudstone which are used as strain 
markers (Fig. 2). Many radiolarians apparently have 
their long axes oriented close to bedding rather than 
cleavage (Fig. lc). An initial preferred orientation of 
radiolarians parallel to bedding is also implied by radio- 
larian Rf/~) data distributions and 0-distribution tests 
(e.g. Figs. 4a-c). These as well as the bedding-parallel 
foliation suggest the existence of a bedding-parallel pre- 
cleavage fabric. 

ANALYTICAL PROCEDURES 

Sample preparation 

Specimen co-ordinates are chosen here such that the x 
axis is parallel to an approximate direction of cleavage- 
bedding intersections and the z axis normal to bedding 
(Fig. 3a). The mudstone on each side of the chert layer 
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Fig. 1. (a) Polished surface of the sample cut subnormal to cleavage-bedding intersections. A chert layer in the middle is 
embedded in mudstone. Note gradual change from chert to mudstone on both sides of the chert layer and pinch-and-swell 
structure of the chert layer. (b) y'z' section showing refraction of quartz veins. Domain bondaries are shown (horizontal). 
Whitc numbers (1-7) indicate layers, while black numbers (1-8) with arrowheads indicate deformed quartz veins whose 
orientations were measured. Note folded deformed veins. Deformed veins as well as undeformcd veins refract through 
layers. (c) Optical micrograph in plane light of an area on Zhe y'z' section, ly'z' and 2y'z' indicate domains. Bedding trace is 
horizontal. Cleavage traces run from upper right to bottom left. Note a foliation subparallel to bedding and radiolarians 
whose long axes preferentially lie between cleavage and bedding. (d) Optical micrograph in plane light of an area on the x'z' 
section. 5x'z' and 6x'z' indicate domains. Bedding tracc is horizontal. Note that both cleavage and radiolarian long axes are 
subparallel to bedding, and also that folded quartz veins (center) are subperpendicular to bedding. See Fig. 3 and text for 

definition of layers, sections and domains. 
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Fig. 2. Optical micrographs in plane light showing traverses across all domains on the y'z' (a) and x'z' (b) sections. See 
Fig. 3 for sections and domains. Numbers indicate layers. Bedding trace is horizontal. Lines with arrowheads mark the 
average cleavage directions in domains. (a) Note that cleavage, radiolarian long axes and quartz veins all refract through 
layers. A deformed quartz vein in center (vein 8 in Fig. lb) is asymmetrically folded and locally cut by cleavage. (b) Note 
that cleavage and radiolarian long axes remain subparallel to bedding, and that quartz veins do not refract on this section. 
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plane is parallel to the finite XY plane of cleavage strain 
in each layer. Although the relationship between strain 
and cleavage is still not fully understood (see Treagus 
1983 for a concise review), cleavage is apparently paral- 
lel to finite XY planes in most cases (cf. Ramsay & 
Huber 1983, pp. 181-184, Price & Cosgrove 1990, pp. 
450-453) and also in the Kitakami slates (Kanagawa 
1991). 

Orientation of  deformed quartz veins 

• 1  x ' y '  

~ 2 x ' y '  

La er 5 0.3 cm 

~ ~::~. 7 x'y' 

y' z' section 

Fig. 3. (a) Specimen co-ordinates with reference to bedding and 
cleavage used in this study. (b) Orientations of the x'y', y'z' and 
x'z' sections. Equal-area lower-hemisphere projection, n-poles ofx'y' 
sections and great circles of y'z' and x'z' sections are shown. (c) 
Schematic block diagram illustrating seven layers, three groups of 
sections, and seven domains on each section. Layer 4 is the chert layer. 
Cleavage traces on three different sections are also schematically 

shown. Their orientations are arbitrarily exaggerated. 

Orientations of eight deformed quartz veins (1-8) on 
the y'z' section (Fig. lb) were measured (Table 1). In 
each domain, the direction of a line joining two inter- 
cepts of a vein with the domain boundaries was taken as 
the mean orientation of that vein. More strongly folded 
and cleaved veins (veins 2, 4 and 8) record larger strains 
than less deformed veins, thus probably formed in an 
early stage pre-dating cleavage, possibly subperpendicu- 
lar to bedding during initial bedding-normal compac- 
tion. Among these veins, vein 8 (Figs. lb and 2a) was 
selected as a reference and assumed to be initially 
perpendicular to bedding, because this is the only vein 
extending through all layers. 

Initial bedding-normal compaction is suggested by 
bedding-parallel foliation as well as initial preferred 
orientation of radiolarians. This compaction is expected 
to have produced quartz veins perpendicular to bedding, 
as preserved in a section subparallel to cleavage- 
bedding intersections (Fig. ld). 

was arbitrarily divided into three layers of 0.3-0.5 cm 
thickness so that the sample is composed of one chert 
layer and six mudstone layers. These layers are labeled 
as layers 1-7, the chert layer being layer 4 (Fig. 3c). Two 
approximately orthogonal sections were cut from the 
sample for analysis. One is subnormal to cleavage- 
bedding intersections (y'z' section), and the other sub- 
normal to bedding and subparallel to cleavage-bedding 
intersections (x'z' section) (Figs. 3b & c). Every layer 
has a cut surface area on each section, which is called 
here a domain. Domains are labeled as ly 'z '-7y'z '  on 
the y'z' section, and as lx 'z '-7x'z '  on the x'z' section 
(Fig. 3c, e.g. Figs. lb & c). A third set of sections were 
cut subparallel to bedding from the middle of every 
layer, and are labeled as lx 'y '-7x'y'  (Figs. 3b & c). 

Cleavage orientation measurement 

Orientations of at least 200 cleavage traces .in every 
domain on both y'z' and x'z' sections were measured 
under the microscope, using the convention that anti- 
clockwise orientations from the bedding trace direction 
are positive. The vector mean direction of cleavage trace 
measurements was then calculated and used as an aver- 
age cleavage direction in each domain. The average 
cleavage plane in each layer was determined from the 
two vector mean directions derived for the domains on 
y' z' and x' z' sections. 

It is assumed in this study that this average cleavage 

Two-dimensional strain analysis using a deformed 
quartz vein 

If vein 8 was perpendicular to bedding before cleavage 
development, the present orientation of this quartz vein 
provides an estimate of layer-parallel finite shear strain 
during the cleavage deformation. Layer-parallel, angu- 
lar shear and shear strain (~ and 7) are thus calculated 
through the layers. 

Because the trace of finite XY plane on any section is 
not generally parallel to the long axis of strain ellipse in 
that section (cf. Ramsay 1967, p. 160), cleavage traces 
on the y'z' section do not necessarily indicate the orien- 
tation of cleavage strain ellipse in this section even if 
cleavage is parallel to the finite XY plane of cleavage 
strain. However, since the y'z' section is subperpendicu- 
lar to cleavage for all layers, the angular difference 
between the cleavage trace and the long axis of cleavage 
strain ellipse would be negligible in all layers in this 
section. The average cleavage direction in each domain 
on the y'z' section is thus regarded parallel to the long 
axis of cleavage strain ellipse. Knowing the orientation 
of strain ellipse and one measurement of angular shear 
in any direction, we can calculate the strain ratio (Ram- 
say & Huber 1983, pp. 128-130). In this case, the strain- 
ellipse orientation is taken as the average cleavage 
direction, and the angular shear in the bedding direction 
0P) is known from the orientation of the reference vein. 
The strain ratio (Rs) for each layer in the y'z' section is 
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Table 1. Orientations of eight deformed quartz veins (1--8 in Fig. lb) on the y'z '  section. Orientations are 
measured positive anticlockwise from bedding trace direction 

Vein 1 Vein 2 Vein 3 Vein 4 Vein 5 Vein 6 Vein 7 Vein 8 

Layer 1 47.5 - -  39.5 - -  47.0 39.5 - -  48.0 
Layer 2 51.5 62.0 38.5 - -  55.0 48.0 38.5 54.0 
Layer 3 59.5 69.0 51.0 - -  59.0 51.5 46.0 68.0 
Layer 4 74.0 72.0 60.0 70.0 - -  65.5 55.0 81.0 
Layer 5 - -  - -  44.5 54.5 - -  45.0 46.0 64.0 
Layer 6 - -  - -  - -  49.5 - -  42.0 39.0 56.0 
Layer 7 - -  - -  - -  48.0 - -  - -  - -  52.5 

therefore calculated using equation (8.18) of Ramsay & 
Huber (1983, p. 141): 

02 = tan ~0 + tan ~0 
tan q~ - tan 2~0 tan ~ '  

where q~ is the angle between cleavage and bedding in a 
domain. 

If the quartz vein was exactly perpendicular to initial 
bedding, the strain ratio thus determined for each layer 
would give a precise estimate of mean bulk strain ratio 
during cleavage development, and can be used for 
comparison with the cleavage strain in the matrix de- 
rived from radiolarians. However, since Rs is a function 
of tan ~, a small deviation of the vein orientation from 
bedding-perpendicular would result in large errors in 
strain ratios. 

Estimation of effective viscosity ratios 

Assuming that the ratio of layer-parallel shear strains 
is the inverse of layer viscosity ratio, the effective visco- 
sity ratio of layer i with respect to layer 4 (chert) during 
cleavage development is calculated using the following 
equation: 

# i  __ 74 

t"/4 7i ' 

where 7i, gi, 74,//-/4 are layer-parallel shear strain and 
effective viscosity in layer i and layer 4, respectively. 

This assumption holds for Newtonian layers with 
coherent interfaces (Cobbold 1983, Treagus 1983). On a 
coherent interface in Newtonian layers, the layer- 
parallel shear stress should be equal in adjoining layers 

so that the ratio of layer-parallel shear strain rate, and 
hence of layer-parallel shear strain in this case, is the 
inverse of layer viscosity ratio. The chert-mudstone 
layer boundaries in the sample analyzed are considered 
to have been coherent, because the lithology gradually 
changes and no sign of slip along these boundaries is 
recognized. Microstructures in this sample indicate syn- 
tectonic crystallization-recrystallization of phyllosili- 
cares as well as pressure solution as the dominant 
processes for cleavage development (cf. Kanagawa 
1991), and suggests diffusive mass transfer as the domi- 
nant deformation mechanism (cf. Knipe 1989), although 
radiolarians may be deformed partly by crystal plasti- 
city. The behavior of this sample during cleavage devel- 
opment can therefore be approximated by a Newtonian 
flow, because theoretical models for diffusive mass 
transfer indicate a linear relationship between stress and 
strain-rate, i.e. Newtonian rheology (e.g. Rutter 1976, 
1983, Knipe 1989, Spiers & Schutjens 1990). 

Two-dimensional strain analysis using radiolarians 

Radiolarians were first traced using a profile projec- 
tor. Axial lengths and long-axis orientations of 10--420 
radiolarians in each domain were obtained using an 
image analysis system described in Kanagawa (1990), 
and used for strain analysis. Final average radiolarian 
ellipses in 21 domains in three groups of sections (x'y', 
y'z' and x'z') were then calculated by Wheeler's (1984) 
method which is equivalent with Shimamoto & Ikeda's 
(1976) method (details in Appendix 1; results in Table 
2). 

The 0-distribution tests of Peach & Lisle (1979) and 
Lisle (1985) were also applied to Rf/~ data on the y'z' 
section where cleavage traces refract through layers. 

Table 2. Final average radiolarian ellipses in domains on three groups of sections. N = number of radiolarians measured; Rf and long axis = 
axial ratio and long-axis orientation of final average radiolarian ellipse calculated by Wheeler's (1984) method. Plunge/azimuth angles are given 

as orientation data. Azimuthal angles are measured anticlockwise from the x axis 

x' y'  section y' z' section x' z' section 

Layer plane normal N Rf long axis plane normal N Rf long axis plane normal N Rf long axis 

1 87.57/240.90 187 1.071 1.78/17.92 1.77/180.01 222 1.695 7.80/89.77 1.45/88.96 270 1.835 2.94/179.03 
2 87.57/240.90 197 1.063 1.80/18.75 1.77/180.01 311 1.503 12.05/89.63 1.45/88.96 268 1.437 0.88/178.98 
3 87.57/240.90 232 1.045 2.16/33.61 1.77/180.01 273 1.395 11.75/89.64 1.45/88.96 246 1.337 1.39/179.00 
4 87.57/240.90 381 1.054 1.94/23.70 1.77/180.01 239 1.313 13.90/89.57 1.45/88.96 418 1.318 2.39/179.02 
5 86.38/354.34 173 1.018 3.33/197.46 1.77/180.01 294 1.362 12.41/89.62 1.45/88.96 210 1.289 2.97/179.04 
6 86.38/354.34 291 1.021 3.42/193.33 1.77/180.01 388 1.425 11.96/89.63 1.45/88.96 400 1.401 1.53/179.00 
7 86.38/354.34 329 1.061 3.48/190.07 1.77/180.01 396 1.744 3.67/89.90 1.45/88.96 397 1.835 1.94/179.01 
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Although some of the seven domains passed this 0- 
distribution test, others failed (e.g. Fig. 4c). Re@ data of 
all domains have similar features such that the vector 
mean q~ direction lies between the cleavage and bedding 
directions, that radiolarians with the highest aspect 
ratios are preferentially aligned around the bedding 
direction, and that Rf@ data distributions are internally 
asymmetric spreading toward the bedding side (e.g. 
Figs. 4a & b). Such Rf/ep data distributions imply an 
initial preferred orientation of radiolarians parallel to 
bedding (cf. Lisle 1985, pp. 16-22), which is consistent 
with the observations of bedding-parallel foliation and 
many radiolarians with their long axes oriented close to 
bedding (Fig. lc). This bedding-parallel pre-cleavage 
fabric is attributable to initial bedding-normal compac- 
tion which also produced quartz veins subperpendicular 
to bedding. 
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We assume in the two-dimensional radiolarian strain 
analysis a pre-cleavage bedding-symmetric fabric of 
radiolarians in the y'z' section, and a homogeneous 
deformation with shortening perpendicular to cleavage 
such that radiolarians deformed passively as their 
matrix. The final average radiolarian ellipse determined 
for each domain on the y'z' section can then be factor- 
ized using Wheeler's (1986a) tensor algebraic method 
into a cleavage strain superimposed on an initial average 
radiolarian ellipse whose long axis is parallel to initial 
bedding (details in Appendix 1). The axial ratios of the 
cleavage strain ellipse and the initial average radiolarian 
ellipse are calculated from equations (A30) and (A31). 
Unstraining of radiolarian Rf[~) data using the radiolar- 
ian strain ratios thus obtained gives pre-cleavage radio- 
larian Ri/O distributions symmetrical with initial bedding 
trace (e.g. Fig. 4d). It should be noted, however, that 
the assumption of passive deformation of radiolarians is 
reasonable only in the chert layer where the radiolaria/ 
matrix competence contrast is negligible, because the 
competence contrasts between radiolarians and matrix 
in mudstone layers must have resulted in differential 
body rotations (cf. Gay 1968a, Freeman 1987). 

In order to estimate the cleavage strains in matrix 
from radiolarian strains, it is further assumed that the 
deformation was a pure shear, and that both radiolarians 
and matrix were Newtonian viscous during the defor- 
mation. Radiolarian strain ellipses are therefore pre- 
sumed to suffer no area change, and that their principal 
axes remain parallel to those of matrix strain ellipses 
throughout the deformation. We also assume no 
radiolaria/matrix competence contrast during the defor- 
mation in the chert layer, and that the viscosity of 
radiolaria was constant throughout the layers. The 
radiolaria/matrix viscosity ratio in a mudstone layer can 
then be considered equal to the chert/mudstone viscosity 
ratio already determined. Under these conditions we 
can calculate the matrix strain ratio for each layer from 
the radiolarian strain ratio using equation (A56) which is 
derived from Eshelby's equations according to Bilby et 
al. (1975) (details in Appendix 2). Deducing matrix 
cleavage strains in this way is, however, logically incon- 
sistent with the above estimation of radiolarian strains, 
because the former is based on inhomogeneous defor- 
mation of radiolarians and matrix whereas the latter 
assumed homogeneous deformation in which radiolar- 
ians behaved passively as their matrix. 

Three-dimensional strain analysis using radiolarians 

Final average radiolarian ellipses on three groups of 
sections (x'y' ,y'z '  and x'z')  listed in Table 2 are com- 
bined to obtain final average radiolarian ellipsoids in 
seven layers. Several methods giving a three- 
dimensional ellipsoid from two-dimensional ellipses on 
any three sections have been proposed (e.g. Ramsay 
1967, pp. 147-149, Milton 1980, Owens 1984, De Paor 
1990). Final average radiolarian ellipsoids are calculated 
here using Milton's (1980) method which gives ellipsoids 
by quadratic-form tensors F. The shape tensors for final 
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average radiolarian ellipsoids, Nf, are then derived as 
F-I/IF-111/3 and used for the strain analysis (see Appen- 
dix 1). 

We assume in three-dimensional radiolarian strain 
analysis that bedding-normal compaction produced a 
pre-cleavage fabric such that initial average radiolarian 
ellipsoids are uniaxially oblate with their short axes 
normal to bedding. Another assumption made here is, 
as in two-dimensional analysis, a bulk homogeneous 
deformation with its finite XYplane parallel to cleavage. 
The final average radiolarian ellipsoid determined for 
each layer can then be factorized using Wheeler's 
(1986a) method into a cleavage strain ellipsoid and an 
initial average radiolarian ellipsoid of uniaxially oblate 
shape (details in Appendix 1). This method yields a 
constraint parameter v for the input data, and the final 
average radiolarian ellipsoid is first corrected so as to 
exactly satisfy the constraint (v -- 0). The squared length 
of bedding-parallel radius of initial average radiolarian 
ellipsoid is then calculated using equation (A46). Know- 
ing this length, the shape tensors for the strain ellipsoid 
and the initial average radiolarian ellipsoid with its short 
axis normal to initial bedding are determined (Appendix 
1). 

In order to estimate three-dimensional cleavage 
strains in the matrix, we assume a constant-volume 
coaxial deformation such that principal strain axes of 
radiolarian strain ellipsoids remain parallel to those of 
matrix strain ellipsoids throughout the deformation, and 
also that both radiolarians and matrix were Newtonian 
viscous during the deformation. Under these assump- 
tions and using radiolaria/matrix viscosity ratios defined 
above, we can calculate the matrix strain ellipsoids 
through the layers from radiolarian strain ellipsoids 
applying Eshelby's equations according to Freeman 
(1987) (details in Appendix 2). 

RESULTS 

Cleavage orientations 

Orientation frequency distributions of cleavage traces 
in domains on y'z' and x'z' sections are shown in Fig. 5. 
In the chert layer (domains 4y'z' and 4x'z'), cleavage 
orientations show a wide scatter and a low concen- 
tration. Fluctuation gradually decreases and concen- 
tration increases away from the chert layer, representing 
a gradual increase of cleavage development toward less 
competent layers. Peaks of orientation frequency gradu- 
ally shift from domain to domain on the y'z' section. 
Accordingly, the vector mean cleavage direction varies 
from 7.48 ° (domain 7y'z') to 23.86 ° (domain 4y'z') so 
that cleavage makes the largest angle with bedding in 
domain 4y'z' (Figs. 5a-g). This indicates a gradual 
refraction of cleavage through the layers as sche- 
matically shown in Fig. 7(a). In contrast, peaks and 
vector mean directions remain subparallel to bedding 
through domains on the x'z' section. Both peaks and 
vector mean cleavage directions in this section, how- 

ever, have a tendency that they slightly shift anticlock- 
wise in more competent layers (Figs. 5h-n). 

Vector mean cleavage directions on y'z' and x'z' 
sections are combined to give average cleavage planes. 
It should be noted that the cleavage direction on y'z' 
section mainly affects the dip of cleavage, whereas that 
on x'z' section the strike of cleavage (see Fig. 3). at-poles 
of the average cleavage planes in seven layers are shown 
in Fig. 6(a). A gradual refraction of cleavage through 
these layers is recognized. Cleavage-bedding intersec- 
tions are not parallel with each other (Fig. 6b), trending 
+7 ° from x axis. They systematically vary through the 
layers except layer 5 such that intersection directions 
rotate anticlockwise as layer competence decreases. It 
could be argued that such variation of cleavage-bedding 
intersections is fortuitous resulting from statistical 
errors. However, this variation mainly arises from the 
variation of cleavage orientations on the x'z' section, 
which seems rather systematic (Figs. 5h-n). 

Layer-parallel shear strains and effective viscosity ratios 

The reference vein orientation, layer-parallel shear 
strains and effective viscosity ratios on the y'z' section 
are shown in Fig. 7 and Table 3. Layer-parallel shear 
strain varies from 0.16 in the chert layer to 0.40-0.90 in 
mudstone layers (Fig. 7b). The effective viscosity ratio 
of mudstone/chert computed as the inverse ratio of 
layer-parallel shear strains gradually decreases away 
from the chert layer (Fig. 7c). The least competent 
layers (layers 1 and 7) are estimated to be about five 
times less viscous than the chert layer (Table 3). 

Two-dimensional strains 

Results of the strain analyses for the y'z' section are 
summarized in Table 3. The final average radiolarian 
ellipse for each layer is factorized into an initial average 
radiolarian ellipse oriented parallel to initial bedding 
and the radiolarian cleavage strain ellipse oriented par- 
allel to cleavage. These ellipses in seven layers are 
shown in Fig. 8. Figure 9 shows cleavage strain ellipses 
for radiolaria and matrix in seven layers. Cleavage strain 
ellipses in matrix are estimated by two independent 
methods. Matrix strain ellipses (1) are those derived 
from radiolarian strain ellipses applying Eshelby's 
equations, while matrix strain ellipses (2) are obtained 
from layer-parallel shear strains using the reference vein 
orientation. 

Final average radiolarian ellipses vary in axial ratio 
from 1.31 (layer 4) to around 1.7 (layers 1 and 7). Their 
long axes always lie between cleavage and bedding 
directions, changing their orientations in accordance 
with cleavage (Fig. 8). Radiolarian cleavage strain 
ellipses vary in axial ratio from 1.21 (layer 4) to around 
1.45 (layers 1 and 7), indicating that less competent 
layers record larger radiolarian strains. Their long axes 
are assumed parallel to average cleavage directions. 
Axial ratios of initial average radiolarian ellipses range 
from 1.05 (layer 6) to 1.24 (layer 7). They are larger in 
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Fig. 6. Equal-area lower-hemisphere projections of cleavage (a) and cleavage-bedding intersections (b) in different layers. 
Numbers indicate layers. (a) ~t-poles of average cleavage planes. (b) Intersection directions of average cleavage planes with 

bedding. 

layers 1 and 7, smaller in layers 5 and 6, and unchanged 
in layers 2-4. Initial average radiolarian ellipses have 
rather  constant long-axis orientations ( - 4 . 6  ° + 1.6 °) 
(Fig. 8 and Table  3), which correspond to initial bedding 
directions. 

Matrix cleavage strain ratios (1) calculated from 
radiolarians range f rom 1.21 (layer 4) to 3.66 (layer 1), 
while those (2) calculated from layer-parallel shear 
strains range from 1.21 (layer 4) to 2.76 (layer 7) (Fig. 9 
and Table  3). Matrix strain ratios are larger in less 
competent  layers. It is noteworthy that both strain ratios 
in layer 4 (chert) exactly coincide. Matrix strain ratios 
(1) reasonably coincide with those (2) except in layer 1 
where the fo rmer  is significantly larger than the latter. 

Three-dimensional strains 

Data  of final average radiolarian ellipsoids, corrected- 
final and initial average radiolarian ellipsoids, and radio- 
larian and matrix cleavage strain ellipsoids are shown in 
Tables 4-6, respectively. All ellipsoids are scaled to 
volume 4~t/3 such that X Y Z  = 1 where X ,Y  and Z are the 
principal axial lengths of ellipsoids. This is because 
shape tensors are used in calculating average radiolarian 
ellipsoids and three-dimensional  strain analysis (Appen-  
dix 1). Constant-volume deformat ion is assumed only in 

deriving cleavage strain ellipsoids in the matrix. In these 
tables, K is the ellipsoid shape pa ramete r  after Ramsay 
(1967, p. 350) and es is the strain magnitude paramete r  
after Nadai (1963, pp. 50 and 73): 

K -  In Rx_______y 
In R r z  

1 {(In R x r )  2 + (In R y z )  2 + (In Rxz)2}  1/2, 

where R x r ,  R y z  and R x z  are the principal-plane axial 
ratios. For  radiolarian ellipsoids e-s represents a measure  
of  deviation from a sphere and is called here the ellipsoid 
strength parameter .  Axes and shapes of these ellipsoids 
are graphically shown in Figs. 10-13. 

Z axes of final average radiolarian ellipsoids slightly 
but systematically vary in orientation through the layers 
(Fig. 10a). In contrast,  their X and Y axes significantly 
vary in orientation. Both axes, except those of  layer 4, 
shift their azimuth directions anticlockwise toward more  
competent  layers (Fig. 10a). The final average radiolar- 
ian ellipsoids have a narrow range of low K values 
(0.053-0.137) (Table 4). No systematic change in ellip- 
soid shape through the layers is recognized, whereas es 
values systematically vary from 0.23 (layer 4) to 0.477 
(layer 7) according to layer competence  (Fig. 10b and 
Table 4). 

Table 3. Results of strain analysis for the y'z' section. ~dcavag~ and @vein = orientations of cleavage and the reference vein (vein 8 in Fig. lb); 
N = number of radiolarians measured; Re and @ = axial ratio and long-axis orientation of final average radiolarian ellipse calculated by Wheeler's 
(1984) method; R i and 0 = axial ratio and long-axis orientation of initial average radiolarian ellipse resolved by Wheeler's (1986a) method;/~R = 
radiolarian cleavage strain ratio calculated by Wheeler's (1986a) method;/~ (1) = matrix cleavage strain ratio calculated from radiolarian strain 
according to Bilby et al. (1975); 72 and ), = layer-parallel, an~ular shear and shear strain calculated from the reference vein;/~i ]~/4 and/~4 II~i = 

effective viscosity ratios of layer i and layer 4 (chert); R~(2) = matrix cleavage strain ratio calculated from layer-parallel shear strain 

Layer  ~ct . . . .  ge ~/~vein N g f  ~ R i 0 R R R~(1)  72 r [~i/]24 IJ4/t~i R~(2)  

1 12.83 48.0 222 1.70 7.80 1.17 -5.79 1.48 3.66 42.0 0.90 0.18 5.68 2.50 
2 18.71 54.0 311 1.50 12.06 1.13 -6.17 1.37 2.40 36.0 0.73 0.22 4.59 2.04 
3 19.42 68.0 273 1.40 11.76 1.12 -4.74 1.27 1.53 22.0 0.40 0.39 2.55 1.58 
4 23.86 81.0 239 1.31 13.91 1.12 -4.36 1.21 1.21 9.0 0.19 1.00 1.00 1.21 
5 17.21 64.0 294 1.36 12.42 1.08 -4.46 1.28 1.66 26.0 0.49 0.32 3.08 1.74 
6 14.28 56.0 388 1.43 11.97 1.05 -4.97 1.37 2.29 34.0 0.67 0.23 4.26 2.10 
7 7.48 52.5 396 1.74 3.67 1.24 -3.09 1.42 2.77 37.5 0.77 0.21 4.84 2.76 
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Fig. 7. (a) Schematic illustration of cleavage (thin lines) and vein (center) orientations through layers on the y'z'  section. 
Vector mean direction of cleavage traces and orientation of the reference vein (vein 8 in Fig. lb) in each domain are shown 
as cleavage (~cl~avage) and vein (~vei,) orientations, respectively. (b) Layer-parallel shear strains (y) calculated from the vein 

orientation. (c) Effective viscosity ratios of layers with respect to the chert layer./~i = effective viscosity of layer i. 

These final average radiolarian ellipsoids as well as 
average cleavage orientations through the layers yield 
reasonable v values ranging from -0.010 to -0.048 
(Table 5). The corrected final average radiolarian ellip- 
soids satisfying the constraint (v = 0) have therefore 
very small difference from the corresponding uncor- 

rected ones in both axes and shapes (Fig. 11 and Table 
5). 

Z axes of initial average radiolarian ellipsoids are 
presumed to be normal to initial bedding in all the layers 
and actually concentrated (Fig. 12a). X and Y axes are 
indeterminate because initial average radiolarian eUip- 
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Fig. 8. Results of radiolarian strain analysis for the y'z' section. Final 
ellipses are final average radiolarian ellipses calculated by Wheeler's 
(1984) method, while strain and initial ellipses are cleavage strain 
ellipses and initial average radiolarian ellipses factorized by Wheeler's 
(1986a) method. Axial ratio and long-axis orientation are indicated on 
the right of each ellipse. Orientations are shown positive anticlockwise 

from bedding trace direction. 
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Fig. 9. Cleavage strain ellipses for radiolaria and matrix in seven 
layers on the y'z' section. Cleavage strain ellipses in matrix are 
estimated by two independent methods. Matrix strain ellipses (1) are 
those derived from radiolarian strain ellipses according to Bilby et al. 
(1975), while matrix strain ellipses (2) are obtained from layer-parallel 
shear strains using the reference vein orientation. Axial ratio and long- 
axis orientation are indicated on the right of each ellipse. Orientations 

are shown positive anticlockwise from bedding trace direction. 
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soids are assumed to be uniaxially oblate (K = 0) due to 
pre-cleavage compaction. The e-s values range from 
0.038 (layer 6) to 0.164 (layer 7), the variation of which 
through layers is similar to that in axial ratios of initial 
average ellipses (Fig. 12b and Table 5). 

The radiolarian and matrix cleavage strain ellipsoids 
are assumed to be coaxial, and the Z axes of the cleavage 
strain ellipsoids normal to average cleavage planes in 
different layers. Their X and Y axes significantly vary in 
orientation through the layers as those of final ellipsoids 
such that they, except those of layer 4, shift their 
azimuth directions anticlockwise toward competent 
layers (Fig. 13a). K values of radiolarian strain ellipsoids 
range from 0.061 (layer 6) to 0.187 (layer 3), while those 
of matrix strain ellipsoids from 0.058 (layer 6) to 0.183 
(layer 3) (Table 6). Radiolarian strain ellipsoids are only 
slightly more prolate than the corresponding matrix 
strain ellipsoids (Fig. 13b and Table 6). There are no 
systematic changes through the layers for both the 
ellipsoid shapes (Fig. 13b). However, the strain magni- 
tudes in both radiolarians and matrix systematically vary 
through layers according to layer competence. ~-s values 
of radiolarian strain ellipsoids range from 0.157 (layer 4) 
to 0.354 (layer 1), while those of matrix strain ellipsoids 
from 0.157 (layer 4) to 0.698 (layer 1) (Table 6). The 
difference in strain magnitude between radiolarians and 
matrix increases toward less competent layers. 

DISCUSSION 

Effective viscosity ratios 

Effective viscosity ratios in naturally deformed rocks 
have been determined in two ways. Gay (1968b, 1969) 
estimated viscosity ratios of different rock types from 
deformed pebbles using his earlier derived equation 
(Gay 1968a). Lisle et al. (1983) also obtained pebble/ 
conglomerate viscosity ratios for different pebble types 
using the equations after Bilby & Kolbuszewski (1977). 
Viscosity ratios of different rock types obtained from 
pebbles are commonly less than 5. Another attempt was 
made by Shimamoto & Hara (1976) who estimated 
viscosity ratios from dominant wavelength/thickness 
ratios of folded quartz veins in matrix schists of differing 
lithology using equations derived by Biot (1965a,b) and 
Sherwin & Chapple (1968). Viscosity ratios obtained by 
them range with respect to pelitic schist from ~4 for 
psammitic schist, through =5 for m afic schist to ~ 125 for 
quartz vein (see Treagus 1983). 

The relationship derived by Cobbold (1983) and Trea- 
gus (1983) for Newtonian layers with coherent interfaces 
provides another simple method for estimating effective 
layer viscosity ratios from layer-parallel shear strains. 
Recent model experiments by Treagus & Sokoutis 
(1992) confirmed this relationship for the case of layer- 

Table 4. Final average radiolarian ellipsoids calculated by Milton's (1980) method from two-dimensional section 
data listed in Table 2. X, Y, Z = principal axial lengths; plunge/azimuth = orientation of principal axis; 

K = ellipsoid shape parameter; Vs --- ellipsoid strength parameter 

Layer X (plunge/azimuth) Y (plunge/azimuth) Z (plunge/azimuth) K e-s 

1 1.251 (1.37/191.45) 1.169 (8.12/101.25) 0.684 (81.76/290.93) 0.127 0.468 
2 1.158 (6.99/37.07) 1.121 (10.50/128.37) 0.770 (77.35/273.98) 0.085 0.320 
3 1.131 (8.59/51.25) 1.092 (8.66/142.57) 0.810 (77.76/277.12) 0.120 0.260 
4 1.118 (4.42/28.15) 1.078 (13.57/119.21) 0.830 (75.70/280.48) 0.137 0.230 
5 1.113 (11.48/71.62) 1.088 (6.67/162.98) 0.826 (76.68/282.55) 0.084 0.234 
6 1.134 (8.33/49.99) 1.114 (8.76/141.28) 0.792 (77.87/277.06) 0.053 0.286 
7 1.250 (1.08/192.26) 1.179 (4.00/102.18) 0.678 (85.86/297.34) 0.105 0.477 

(a) Y 
I 

/D5 7 

(b) 

lnRxr 

0.5- 

0.0 0.0 

prolate oX~  ~ /  " /  (K> 1) 

oblat @f~°''x~'~ e 
(K< 1) 

1 
qbOo o o07 

' ' 5 ~ 6 ' 0 1 5  ' ' ' 

lnRrz 

Fig. 10. Graphical representation of final average radiolarian ellipsoids calculated by Milton's (1980) method from 
two-dimensional section data listed in Table 2. Numbers indicate layers. (a) Equal-area lower-hemisphere projections of 

three principal ellipsoid axes. Symbols: triangle = X; square = Y; circle = Z. (b) Logarithmic Flinn plot. 
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Fig. 11. Graphical representation of final average radiolarian ellipsoids corrected so as to satisfy the constraint (v = 0) of 
Wheeler's (1986a) method. Numbers indicate layers. (a) Equal-area lower-hemisphere projections of three principal 

ellipsoid axes. Symbols: triangle = X, square = Y; circle = Z. (b) Logarithmic Flinn plot. 

parallel simple shear. A quartz vein presumed to be 
initially perpendicular to bedding was used here to 
estimate layer-parallel shear strains, and hence the 
effective viscosity ratios in chert-mudstone layers. The 
results indicate that layer viscosity gradually decreases 
away from the chert layer with an abrupt change be- 
tween chert and adjacent mudstone layers (Fig. 7c). But 
according to this method, the chert/mudstone viscosity 
ratio never exceeds 6 even in the least competent mud- 
stone layer (Table 3). Folded quartz veins in the chert 
layer (e.g. Fig. 2a) indicate that vein quartz is much 
more viscous than the chert, and so the effective visco- 
sity ratios obtained in this study are consistent with those 
reported elsewhere. 

The exact coincidence in the chert layer of both strain 
ratios calculated from radiolarians and layer-parallel 
shear strain (Fig. 9) confirms that the viscosity contrast 
between radiolarians and their chert matrix was negli- 
gible during cleavage development. Provided that the 

viscosity of the radiolarians is constant throughout the 
layers, the radiolaria/matrix viscosity ratios can there- 
fore be considered equivalent to the chert/mudstone 
viscosity ratios and can be estimated through layers. 

Cleavage refraction 

With decreasing competence from the chert layer to 
mudstone layers, cleavage continuously refracts toward 
bedding and increases in intensity (Figs. 5 and 6a). 
Cleavage refraction is also accompanied by a slight but 
systematic change in cleavage-bedding intersection 
direction. It could be argued that this variation falls 
within a statistical error range, and that cleavage- 
bedding intersections are essentially parallel throughout 
the layers. But the variation of cleavage orientations on 
the x'z' section (Figs. 5h-n) seems rather systematic, so 
the resulting variation of cleavage-bedding intersections 
is considered not to be an artifact of statistical variations. 
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Fig. 12. Graphical representation of initial average radiolarian ellipsoids resolved by Wheeler's (1986a) method. Numbers 
indicate layers. (a) Equal-area lower-hemisphere projections of Z axes. (b) Logarithmic Flinn plot. 
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Fig. 13. Graphical representation of cleavage strain ellipsoids for radiolaria and matrix. Numbers indicate layers. 
Radiolarian strain ellipsoids are calculated by Wheeler's (1986a) method, while matrix strain ellipsoids are calculated 
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triangle = X; square = Y; circle = Z. (b) Logarithmic Flinn plot. Symbols: open circle = radiolarian strain ellipsoid; filled 

circle -- matrix strain ellipsoid. 

Cleavage-bedding intersections rotate anticlockwise as 
layer competence decreases (Fig. 6b). Finite XY planes 
subparallel to cleavage should therefore refract such 
that their intersections with bedding do not remain 
parallel but rotate anticlockwise with decreasing layer 
competence. This is consistent with Treagus's (1988) 
example, and implies a refraction of all three principal 
axes of finite strain ellipsoid through the layers, hence a 
three-dimensional strain refraction. Although intersec- 
tions of XY planes with layering rotate clockwise with 
decreasing layer competence in Fig. 5 of Treagus (1988), 
the sense of rotation in her model depends on the 
direction of layer-parallel shear with respect to layer- 
parallel-orthogonal strain directions. 

The difference in orientation on the y'z' section be- 
tween the cleavage and the reference vein supposedly 
initially perpendicular to bedding (Fig. 7a) is too large 
even in least competent layers to consider this cleavage 
as initially perpendicular to bedding and afterwards 
refracted by subsequent strain. This, the second cleav- 
age refraction model of Treagus (1988), where cleavage 
initiates perpendicular to bedding and subsequently 
refracts as material planes, is therefore unrealistic for 
the cleavage here. But this does not necessarily justify 
her first cleavage refraction model where cleavage re- 
fraction exactly represents the refraction of finite XY 
plane, because cleavage is apriori assumed to be parallel 
to the finite XY plane of cleavage strain in this study• 

Strain variation and refraction 

Two- and three-dimensional cleavage strains 
recorded by radiolarians are resolved from their final 
shapes by Wheeler's (1986a) method using axial ratios 
and orientations of radiolarians from three sets of sec- 
tions. Cleavage strains in matrix are then determined 
from radiolarian strains using radiolaria/matrix viscosity 

ratios obtained from layer-parallel shear strains and 
applying Eshelby's equations. The results thus quantify 
strain refraction across competence contrasts in natur- 
ally deformed chert-mudstone layers. 

As layer competence decreases, estimated layer- 
parallel shear strain gradually increases (Fig. 7b), and 
radiolarian and matrix cleavage strain ellipses gradually 
increase in axial ratio and refract their long axes parallel 
to cleavage toward bedding (Fig. 9), which is consistent 
with the two-dimensional strain refraction theory (Trea- 
gus 1983, 1988)• 

As expected from cleavage refraction, all three princi- 
pal axes of radiolarian and matrix cleavage strain ellip- 
soids refract from layer to layer as predicted by Treagus 
(1983, 1988), indicating a three-dimensional strain re- 
fraction. One may argue against this three-dimensional 
strain refraction maintaining that cleavage-bedding 
intersections remain subparallel in all layers (Fig. 6b), 
and therefore that the system must be essentially two- 
dimensional oblique as expected from Fig. 3(c). But it is 
never assumed in this study that cleavage directions on 
the x'z' section are parallel to the principal cleavage 
strain axis, in which case the system would become 
essentially two-dimensional oblique• In addition, 
cleavage-bedding intersections are considered to vary 
systematically through the layers as discussed earlier, 
suggesting a three-dimensional strain refraction. 

Refractions of X and Y axes through the layers are 
rather systematic and therefore considered not to be 
totally an artifact of statistics (Fig. 13a). But their 
refractions are apparently so significant that a chan- 
geover of these axes nearly occurs• Such strong vari- 
ations of these two axes according to competence 
contrasts are probably due to cleavage strain ellipsoids 
close to uniaxial oblate (Fig. 13b), because such ellip- 
soids with axial lengths X ~ Y have X and Y axes very 
sensitive to variation in axial length. 
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Strain magnitude gradually increases away from the 
chert layer (Table 6). No systematic change in ellipsoid 
shape occurs associated with strain refraction (Fig. 13b 
and Table 6), but all are close to uniaxial oblate. This is 
in contrast to examples considered by Treagus (1983, 
1988) where significant variations in strain ellipsoid 
shape were derived according to competence contrasts. 
However, the strains in these examples were close to 
plane strain. Uniaxially oblate strains as in this study 
may result in no detectable change in strain ellipsoid 
shape according to competence contrasts. 

The radiolarian strain ellipsoids are only slightly more 
prolate than the corresponding matrix strain ellipsoids 
(Fig. 13b). Radiolarian strain ellipsoids with very low K 
values as well as with relatively low viscosity contrasts 
with matrix may result in such a small difference in strain 
ellipsoid shape between radiolarians and matrix (cf. 
appendix 1 in Freeman 1987). 

Validities of  assumptions and limitations of  analyses 

The results of strain refraction obtained in this study 
are internally consistent as indicated below. Cleavage 
strain systematically refracts through layers. Initial aver- 
age radiolarian ellipses and ellipsoids in different layers 
are found to have constant orientations indicating initial 
bedding (Figs. 8 and 12a). Two-dimensional cleavage 
strain ratios in matrix calculated from radiolarians 
reasonably coincide with those calculated from layer- 
parallel shear strains (Fig. 9). But these internally con- 
sistent results do not necessarily imply the validities of 
assumptions made in this study. The results are reliable 
if these assumptions are valid or reasonable, but their 
reliabilities remain uncertain unless the validities of 
assumptions are assessed. 

Basic assumptions made in this study can be summar- 
ized as follows. (1) Initial bedding-normal compaction 
produced quartz veins perpendicular to bedding and a 
pre-cleavage bedding-symmetric fabric of radiolarians. 
(2) Average cleavage plane determined is parallel to the 
finite XY plane of cleavage strain. (3) The chert- 
mudstone layers were Newtonian viscous during cleav- 
age development. (4) There was no radiolaria/matrix 
competence contrast in the chert layer during cleavage 
development, and the viscosity of radiolaria was con- 
stant throughout the layers. (5) In radiolarian strain 
analyses, the cleavage deformation is assumed to be 
homogeneous such that radiolarians deformed passively 
as their matrix. (6) In matrix strain calculations, the 
deformation is assumed to be pure shear in two dimen- 
sions, and to be coaxial with constant volume in three 
dimensions. All other assumptions made can be derived 
from the above basic assumptions along with obser- 
vations of the sample. As already discussed earlier, 
assumptions (1)-(4) are considered to be reasonable, 
but assumption (5) is reasonable only in the chert layer 
and incompatible with assumption (6). 

Area change and volume reduction are expected to 
accompany pressure solution during cleavage develop- 
ment (e.g. Wright & Platt 1982, Beutner & Charles 

Table 7. Results of unstraining procedures. Unstraining (1) shows 
axial ratio (Ri) and long-axis orientation (0) after unstraining of final 
average radiolarian ellipse by R s using Bilby & Kolbuszewski's (1977) 
equations. Unstraining (2) shows strain ratio (Rs), axial ratio (Ri) and 
long-axis orientation (0) obtained by unstraining of final average 
radiolarian ellipse using Bilby & Kolbuszewski's (1977) equations until 

0 becomes parallel to unstrained bedding 

Unstraining (1) Unstraining (2) 

Layer R s R i 0 gs Ri 0 

1 3.66 1.18 -10.7 5.94 1.14 -40.7 
2 2.40 1.14 -8 .6  2.92 1 .11  -26.0 
3 1.53 1.13 -4.9 1.59 1.11 -9.9 
4 1.21 1.12 -4 .4  1.21 1.12 -4 .4  
5 1.66 1.08 -5.1 1.72 1.07 - 10.8 
6 2.29 1.04 -5.9 2.41 1.04 -17.2 
7 2.77 1.23 -6.0 3.90 1.13 -19.6 

1985). In addition, Treagus's (1988) strain refraction 
theory indicates that layer-parallel simple shear domi- 
nates in incompetent layers, and therefore suggests that 
the non-coaxial strain component increases as layer 
competence decreases. Assumption (6) seems therefore 
unreasonable. 

As mentioned earlier, competence contrasts between 
radiolarians and matrix would result in their differential 
body rotations, the effect of which is ignored by assump- 
tion (5). This effect in two dimensions is considered 
here. For each y'z'  domain, the matrix is unstrained with 
final average radiolarian ellipse (Rf/~b) using Bilby & 
Kolbuszewski's (1977) equations by the amount of 
matrix strain ratio (Rs) derived from the radiolarians. 
Their equations are rewritten by Lisle et al. (1983) in 
terms of commonly used variables: 

G(Rf) sin 2tp = G(Ri) sin 20 

f Rf J(R)G(R) 
In R s = 2 R~ 2R(R + 1)2%/G2(R) - G2(Ri) sin 2 20 dR, 

where Ri and 0 are the axial ratio and long-axis orien- 
tation of the radiolarian ellipse after unstraining, and: 

J(R) = R 2 + 2 r R  + 1 

R 2 - 1 [rR 2 + 2R + rlr ' 
G(R) - f i  [ - - (k+-~)-  £ 

where r is radiolaria/matrix viscosity ratio. Comparison 
of the results (unstraining (1) in Table 7) with initial 
average radiolarian ellipses obtained by Wheeler's 
(1986a) method (Ri/O in Table 3) indicates that in spite 
of very small differences in axial ratio the difference in 
long-axis orientation increases toward less competent 
layers. This illustrates an increasing component of rigid- 
body rotation accompanying deformation of radiolar- 
ians with increasing competence contrast. 

If assumption (5) of bulk homogeneous deformation 
is dropped, behavior of individual radiolarians as a 
whole would not be represented by that of an average 
radiolarian ellipse. Two-dimensional matrix strains can 
be determined by an unstraining procedure combining 
the methods of Dunnet & Siddans (1971) and Lisle et al. 
(1983), but no method is available at present for three- 
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dimensional matrix strains. Possible solutions for two- 
dimensional matrix strains would be obtained by exam- 
ining the symmetry of unstrained individual Rf/~) data 
with respect to unstrained bedding at each incremental 
reciprocal strain, when the symmetry is maximized. 
Final average radiolarian ellipses are tentatively 
unstrained here using the above equations until their 
long axes become parallel to unstrained bedding which is 
obtained by equation (D.13) of Ramsay & Huber 
(1983): 

tan 0 b = Rs tan ~ b ,  

where q~u and 0b are bedding directions before and after 
unstraining, respectively. The results (unstraining (2) in 
Table 7) indicate that both strain ratios and long-axis 
orientations of initial radiolarian ellipses deviate signifi- 
cantly in less competent layers from those (R~(1) and 0 
in Table 3) obtained by combined methods of Bilby et al. 
(1975) and Wheeler (1986a). This procedure, however, 
yields internally inconsistent results with initial bedding 
directions varying significantly through layers. Although 
the unstraining procedure of individual Rf/qb data re- 
quires a huge amount and time of calculations, this is 
definitely the next step to be done. 

CONCLUSIONS 

A sample of chert-mudstone layers used in this study 
provides a rare example of quantitative analyses of 
competence contrasts in naturally deformed rocks, be- 
cause it contains deformed quartz veins some of which 
were possibly formed subperpendicular to bedding be- 
fore cleavage development, and also abundant radiolar- 
ians used as strain markers whose viscosity during 
deformation is approximated by that of chert. Under 
several assumptions these enabled tentative quantitative 
analyses leading to the following conclusions which 
seem to be consistent with Treagus's (1983, 1988) strain 
refraction theory. 

(1) Effective layer viscosity ratios were estimated 
from layer-parallel shear strains using a vein supposed to 
be initially perpendicular to bedding. Chert/mudstone 
layer viscosity ratios so obtained (2.6-5.7) were used as 
radiolaria/matrix viscosity ratios in different layers. 

(2) With decreasing layer competence, cleavage re- 
fracts towards bedding and increases in intensity, while 
cleavage-bedding intersections do not remain parallel 
but rotate anticlockwise. Finite XY planes subparallel to 
cleavage should refract in this way, and all three princi- 
pal axes of finite strain ellipsoids should refract through 
layers of different competences. 

(3) As expected from cleavage refraction, all three 
principal axes of radiolarian and matrix strain ellipsoids 
estimated in this study refract from layer to layer. Strain 
magnitude systematically varies according to layer com- 
petence. However, no systematic change in ellipsoid 
shape associated with strain refraction is recognized. 

(4) Strain ratios calculated from radiolarians taking 
account of competence contrast with their matrix 

reasonably coincide with strain ratios calculated from 
layer-parallel shear strains. Initial average radiolarian 
ellipses and ellipsoids obtained have constant orien- 
tations with respect to initial bedding through layers. 
These, along with systematic strain refraction, make the 
results internally consistent. 

(5) The above results are reliable if several assump- 
tions made are valid or reasonable. Some assumptions 
seem reasonable. But others are unreasonable and thus 
bring uncertainties in the results obtained. 
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APPENDIX 1 
STRAIN ANALYSIS OF ELLIPTICAL/ 

ELLIPSOIDAL MARKERS WITH AN INITIAL 
BEDDING-SYMMETRIC FABRIC: WHEELER'S 

(1986a) METHOD 

subscripts denoting initial and final 
superscript denoting transposed vector or tensor 
position (column) vector 
unit vector normal to bedding 
unit vector normal to cleavage 
unit vector parallel to lineation (cleavage trace in two 
dimensions) 
unit vector parallel to cleavage-bedding intersection 
unit tensor 
symmetric second-order tensor 
Shimamoto & Ikeda's (1976) ellipse shape tensor 
Wheeler's (1984) ellipse shape tensor 
Shimamoto & Ikeda's (1976) shape tensor of average 
marker ellipse 
Wheeler's (1984) shape tensor of average marker 
ellipse/ellipsoid 
eigenvalues of N (a I >- a 2 >- a3, ala2a 3 = 1) 
deformation (position gradient) tensor 
Finger's tensor (L = ppT) 
dilatation 
non-dilatational deformation tensor 
Wheeler's (1984) shape tensor for strain ellipse/ 
ellipsoid 
eigenvalues of Ns (2~ - 22 -> '~3, '~122~'3  = 1) 
vector defined by Nfbf 
unit vector parallel to u 
vector defined by Nit 
unit vector parallel to v 
constraint parameter in three-dimensional analysis 

Average marker ellipse 

Any ellipse can be described by the following equation: 

xTFx = 1, (A1) 

where F is a symmetric second-order tensor. Shimamoto & Ikeda's 
(1976) ellipse shape tensor is a tensor of unit determinant defined as: 

F 
G - X/~-[' (A2) 

where IFI is the determinant of F. Wheeler's (1984) ellipse shape 
tensor is also a tensor of unit determinant defined as: 

F-Z 
H = X/[F-:T[' (A3) 

H = G-I  (A4) 

G H -  m 

Both shape tensors represent the same ellipse scaled to area 3t from the 
ellipse (A1). Both tensors have their eigenvectors parallel to the 
ellipse axes. The eigenvalues of Shimamoto & Ikeda's (1976) shape 
tensor give reciprocal squared axial lengths of the ellipse, whereas 
those of Wheeler's (1984) shape tensor give squared axial lengths. For 
an ellipse with axial ratio R and long-axis orientation ¢ from the x axis, 
G and H are given by the following equations: 



G =  

H =  
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1 2 R sin2~p + ~ cos ¢ 

( 1 _  R)sine cos¢ 

( 1 -  R) sinq~ cos(P 1 

l s in2¢  + R cos2¢] 
(AS) 

1 sin2tp + R COS2~ 

(R - R1--) sin¢ cosq~ R sin2q~ + g--COS2~ 
(A6) 

For a suite of marker ellipses, shape tensors for individual marker 
ellipses can be averaged by adding them and dividing by the number of 
ellipses (Wheeler 1984, 1986b). Two types of averaged shape tensor 
are written here as ~ and H. The average marker ellipse is one with 
area at represented by either of the following shape tensors: 

~J 
M = V ~  (A7) 

N = X / ~ "  (A8) 

For two dimensions it is proved by Wheeler (1986b) that: 

N = M -1. (A9) 

M and N equally represent the average marker ellipse: both have 
eigenvectors parallel to the axes of average marker ellipse; and M has 
eigenvalues of recriprocal squared axial lengths, whereas N has those 
of squared axial lengths. If marker ellipses were initially randomly 
oriented and are deformed homogeneously, the final average marker 
ellipse would be identical to the strain ellipse scaled to area at 
(Shimamoto & Ikeda 1976, Wheeler 1984). 

Non-dilatational part of deformation 

Any deformation can be described by a position gradient tensor P. 
The strain ellipse/ellipsoid can then be described by the following 
equation: 

xTL-lx = 1, (A10) 

where L is the Finger's tensor such that: 

L = ppT. (Al l )  

Wheeler's (1984) shape tensor for the strain ellipse/ellipsoid is given as 
follows: 

L 
Ns = IL-~'  (A12) 

where ILl is equal to square of the dilatational strain, 1 + A, and n is the 
dimensionality 2 or 3. N s represents the strain ellipse/ellipsoid scaled to 
area at in two dimensions or volume 4at/3 in three dimensions, and its 
eigenvalues (21 >- ).2 ----- 23, 414243 = 1) are equal to squared axial 
lengths of the ellipse/ellipsoid. If the deformation conserves area/ 
volume, then N~ exactly represents the strain ellipse/ellipsoid. Substi- 
tuting (A11) into (A12) and rearranging: 

p pT 
N s = Ip---TIN ~ l - r ~ .  (A13) 

Defining the non-dilatational deformation tensor, D, by: 

P D = ~p---~. (A14) 

(A13) can be rewritten as: 

N s = DD T. (A15) 

Thus N s represents the non-dilatational part of the deformation. 
Because we are dealing only with the shapes of ellipses/ellipsoids in 
this study, (A15) is sufficient to describe their changes during the 
deformation. If both Ns and A are determined, L is then found from 
(A12) as: 

L = (1 + A)2mN s. (A16) 
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Two-dimensional strain analysis on a section plane 

Initial bedding-symmetric condition in two dimensions implies that 
the long axis of initial average marker ellipse is parallel to the initial 
bedding trace. The shape tensor for such an ellipse has an eigenvalue 
a2 (= 1/aO in the bedding-normal direction, and therefore: 

Nih i = a2b i. (A17) 

Nf and hf are related to N i and bl by non-dilatational deformation 
tensors as follows (Wheeler 1986a): 

Nf = DNi DT (A18)  

h -  (DT)- lh i  (A19)  

where I(DX)-lbi] is the norm of (DX)-lbi . N i and h i can then be 
expressed in terms of Nf and bf as follows: 

N i = D- 1Nf(D T)- 1 (A20) 

DTbf (A21) 
b i = [DTbf]- 

Substituting (A20) and (A21) into (A17), we get: 

D- 1Nfbf = a2DTbf. (A22) 

Multiplying both sides of (A22) with a preceding D, and using N s = 
DD T and u --- Nfbf: 

u = a2Nsb f. (A23) 

Wheeler (1986a) describes the geometrical significance of Nf bf. Dot- 
multiplying both sides of (A23) with !, and using I. (Ns hf) = (N s I). hf 
because Ns is symmetrical: 

I. u = az(Nsl ) • bf. (A24) 

Dot-multiplying both sides of (A23) with c similarly yields: 

c. u = a2(Nse ) • bf. (A25) 

Since N s has eigenvalues 21 and 22 (= 1/2 0 with eigenvectors I and c, 
respectively, 

Nsl = All (A26) 

1 
Nsc = 41 c . -  (A27) 

Substituting (A26) and (A27) in (A24) and (A25), respectively, we 
get: 

I- u = 21a21 • bf (A28) 

a2 C" U = 711 c" bf. (A29) 

(A28) and (A29) are two equations with two unknowns, 21 and a2. 
Solving these equations with respect to 4~ and a 2 yields: 

42 _ (l" U)(C' bf) ~ 2 ~  (A30) 

a2 = (I. u)(c .u) (A31) 
(1: bf)(¢ " bf) '  

(A30) and (A31) must satisfy 212 > 1 and ~ < 1 such that they are 
geologically realistic. The axial ratio of strain ellipse, Rs, is equal to 2~, 
because: 

_ 4 1 _  ~ z _  1 

The strain-ellipse long axis is parallel to i, and its orientation q~s is given 
by the cleavage trace direction. N s is obtained from R s and ~s using the 
equation similar to (A6): 

[R1-- sin2~s + R cos2¢s (R - Is) sinq~s cosq~s 1 
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The non-dilatational deformation tensor  D is then found from N~ = 
DD T. Substituting this D into (A21) and (A20) gives the initial bedding 
direction and the initial average marker  ellipse, respectively, the latter 
having the axis of length X / ~  perpendicular  to the initial bedding. 

Three-dimensional strain analysis assuming initial average marker 
ellipsoid of  uniaxially oblate shape 

An initial average marker  ellipsoid of uniaxially oblate shape will 
have the axial length of X/~al = V~a2 in any direction parallel to the 
initial bedding, and that  of ~ / ~  = 1/al in the direction normal to 
bedding. The shape tensor  of such an ellipsoid can be written as follows 
(Wheeler  1986a): 

Ni = alE + (-~l - al)bib T. (A33) 

Substituting (A33) into (A18): 

Nf = a1DEDT + (a~ - al)  D(bibT)DT 

= alNs + (a~ - al)(Dbi)(Dbi) T . (A34) 

Multiplying both sides of (A21) with a preceding D: 

Nsbf 
Dbi = [ - D - ~ '  (A35) 

The denominator  of the r ight-hand side of (A35) and be rewritten as: 

]DTbf] = N/DTbf- DTbf, (A36) 

where 

DTbf • DTbf = (DTbf)TDTbf = bTDDTbf = bf" Nsb f. 

Therefore:  

IDThf[ = ~/bff- Ssbf. (A37) 

Substituting (A37) into (A35) and applying (A23): 

Db i _ u . (A38) 
~/a3b f • u 

Substituting (A38) into (A34) and using a 3 = 1/a~: 

Nf = alN s "1- 1 -- a 3 T (A39) 
bf .----~uu . 

Dot-multiplying both sides of (A39) with c and using v = N fc yields: 

e ' u  
v = al).3c + (1 - a 3) b-~-_~, e u (A40) 

The geometrical significance of v is described by Wheeler  (1986a). 
(A40) indicates that  three vectors v, c and u are coplanar,  and provides 
a constraint parameter  as follows: 

v = c" (v' x u ' )  -- 0. (A41) 

Nf must be corrected so as to exactly satisfy this constraint before any 
other  calculations. A correction is suggested by Wheeler  (1986a) as 
follows: 

K -1 = N~ -1 - (c- N~'lm)(mc + c m )  (A42) 

K 
N~ = ~ - ~ ,  (A43) 

where N~ is the corrected final average marker  ellipsoid. 
Dot-multiplying both  sides of (A40) with e yields: 

C ' V :  al,,l. 3 + ( 1 -  al 3) ( ; ;  ?~2. (A44) 

Dot-multiplying both sides of (A40) with bf gives: 

U "  C = a l~ .3c  • b f  + (1 - a13)(e - u) (A45) 

because: 

b f '  v = b f "  N t c  = N f b f "  e = u - e .  

(A44) and (A45) are two equations with two unknowns,  al and 23. 
Solving these equations with respect to a I yields: 

a3 _ ( c  - b f ) ( c  • v ) ( b f  - n _ ) -  ( c -  u )  2 (A46) 
1 (C" n ) ( b f  • u - -  ( c .  b f ) ( e  - U)}"  

Using a t thus obtained. N s can be calculated from (A39) as: 

N s = I N f + ( a ~ - 1 t  n u  T ~-1] b~- u (A47) 

The non-dilatational part  of the deformation is thus determined.  The 
eigenvectors and eigenvalues of Ns give the principal axes and squared 
axial lengths of the strain ellipsoid scaled to volume 4:d3. The non- 
dilatational deformation tensor D is then found from 1~ = DD T. 
Substituting this D into (A20) gives the initial uniaxial average marker  
ellipsoid which has axial length of X/h~l parallel to the initial bedding. 

APPENDIX 2 
ESTIMATION OF MATRIX STRAINS FROM 

COMPETENT ELLIPTICAL/ELLIPSOIDAL 
INCLUSIONS: APPLICATIONS OF ESHELBY'S 

(1957) EQUATIONS 

Notation 

I,M 
ai  
X , Y , Y  
g ij 
Eij 
(oq  

S i jk l  
Ilijkt 
P 
r 
R 

superscripts denoting inclusion and matrix 
axial length of inclusion 
axial length of strain ellipsoid (X -> Y -> Z) 
natural strain tensor 
strain rate tensor 
vorticity tensor 
tensor relating matrix and inclusion strain rates 
tensor relating matrix and inclusion vorticities 
viscosity I M 
viscosity ratio (r  =/~ & ) 
strain ratio. 

Deformation of  a viscous ellipsoidal inclusion in a slowly deforming 
matrix of  contrasting viscosity 

If both an inclusion and its matrix are incompressible and Newto- 
nian viscous, then a homogeneous deformation of the inclusion and 
the resulting deformation in matrix is described by the following 
Eshelby's equations (Eshelby 1957, Bilby et al. 1975, Bilby & Kolbus- 
zewski 1977, Freeman 1987): 

u M ( ~ j  - -  "M M 1 "I 
F.ij ) = (,U --  ~ )S i j k lEk l  (A48) 

M I M __ /z (tOil - wij ) - Q~M _/zl)ilijktw~t, (A49) 

where Sijkt and Ilqk t depend only on the instantaneous axial lengths of 
the inclusion. Their  non-zero components  are: 

= ~ a21aiai Sire 

Sii j  j = 3 z (A50) 8--~ a) laiaj 

3 aZ)ia,aj Sqiy = ~ (a 2 + 

Iloi j = lai - lae (A51) 
8at 

with symmetrical relationships: 

Sqq = Sqj i = Sji q =Sfiji and IIqq =IIi# i = -IIj i  q = -Iljifi, 

where lai and la,aj represent  a set of integrals as follows: 

lai = 2arala2a3 1 = 2 du (i = 1,2,3) o (a~ Yh)a 

f du 
laiai = 2:tala2a3 J[o ~ (i = 1,2,3) (A52) 

( i  = 1 , 2 , 3 )  

(i = 1,2,3;j  = 1,2,3) 

(i = 1,2,3;j  = 1,2,3) 

(i = 1,2,3;j  = 1,2,3) 
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I~ du 
laiaj = ]~alaza3 o ( a2 + u)( a2 + u)A (i = 1,2,3;j =1,2,3) 

with: 

A = {(a 2 + u)(a 2 + u)(a 2 + u)} lt2. 

Calculation o f  two-dimensional matrix strains 

Consider a cylinder with unit-radius circular section embedded in 
matrix and deform the matrix by pure shear such that principal strain 
axes remain parallel to those of the ellipse section of the deformed 
cylinder. This is one of the cases discussed by Bilby et al. (1975). The 
deforming cylinder has axial lengths such that ala2= 1 and a3 ~ oo. 
Because of  pure shear, there is no vorticity, that is, ¢oij = ~ = O. ki.j can 
be diagonalized such that kij = 0 when i # j and eii = k/. Pure shear is 
then satisfied by kl + k2 = 0 and k 3 = 0. Under  these conditions 
Eshelby's equations (A48) and (A49) are simplified as follows: 

k M = (1 + (r - 1 ) (Sun - Sn22)}k[. (A53) 

Analytical solutions of Sin1 and S1122 are given in Bilby etal. (1975) as: 

a 2 a 2 
Sll l l  = 1 (a 1 + a2- ~ ,  Sn2 z = ~ .  

Substituting these into (A53) and using a 2 = l/a1, we get: 

kM = (al z + 1) 2 + 2(r - 1)a 2 k[. (A54) 
(a~ + 1) z 

Integrating (A54) with the boundary condition that a I = a2 = 1 when t 
= 0: 

e~ = el + ½(r - 1) tanh (e~) (A55) 

which is the solution given by Bilby et al. (1975)• Equation (A55) can 
be rewritten in terms of strain ratio using el --- In R/2: 

In R M = In R I + (r - 1) tanh (½ In R1), (A56) 

This is the equation relating the strain ratio of matrix to that of the 
inclusion. 

Calculation o f  three-dimensional matrix strains 

Consider a sphere with unit radius embedded in matrix and deform 
the matrix by constant-volume coaxial deformation such that principal 
strain axes remain parallel to the ellipsoidal axes of the deformed 
sphere. This is one of the cases discussed by Freeman (1987). The 
deforming ellipsoid has axial lengths such that alaza 3 = X I YI zI  = 1.. 

I __ M _ _  Because of coaxial deformation, there is no vorticity and coq - o~i) - 0. 
kq can be diagonalized such that el/ = 0 when i ~ ./ and eli = ki. 
Constant-volume coaxial deformation is then satisfied by kl + ~2 + ~3 
= 0. Under  these conditions Eshelby's equations (A48) and (A49) are 
simplified as follows: 

kM = k~ + (r -- 1)(S,1,, - $1,33)k ~ + (r - 1)(S,,22 - S,133)k ~ (A57) 

e2"M = e2-I + ( r  - -  1 ) (S2211 - 82233)E ~ q- ( r  - -  1 ) (S2222  - S2233)e  I .  ( A 5 8 )  

Since eX~ = In a 1 and e I = In a 2, then k~ = ha/a I and ~ = ~/az .  Substi- 
tuting these into (A57) and (A58), we get: 

kM = ~ilal + (r -- 1)(Sllll -- Sl133 ) ~llq -- (r - 1) 

($1122- $1133 )~22 (A59) 

k M = aztiZ + ( r -  1)($2211 - 52233 ) ~ q -  (r - 1) 

($2222 _ $2233) •2. (A60) 
a 2  

These two equations are solved numerically as done by Freeman 
(1987)• While the right-hand sides of both (A59) and (A60) are 
numerically integrated with the boundary conditions that a 1 = a z = a 3 
= 1 when t = 0, and that a I = X 1, 0- 2 = y l  and a 3 = Z I when t = t, the 
left-hand sides yield: 

e M = In X M (A61) 

e M = In yM, (A62) 

respectively. If the inclusion strain ellipsoid (X l , yl  and Z l) is known, 
we can therefore numerically calculate the matrix strain ellipsoid (X M , 
yM and zM). 


